Testing

Assessment 2 Team
Team 12
Richard Liiv
Umer Fakher
William Walton
James Frost
Olly Wortley

Joe Cambridge

a) Summary of Testing Methods

Whilst planning and designing tests, we decided that we should maximise the number of
automatic tests, implementing unit tests for any components that could be tested individually.
Integration tests were used heavily as a lot of the components were too reliant on each other
to be tested in isolation. These allowed us to still run automatic tests for interaction between
objects, for example Obstacles and Boats. (These integration tests required running the
game in a headless environment, using a test runner from
https://github.com/TomGrill/gdx-testing).

A large number of features could not be tested with automatic testing, for example, testing if
the position of buttons were accurate or testing that the Ul functioned. To test these, manual
testing was employed. This testing methodology was appropriate for testing the project
because, due to the nature of LibGDX, and by extension most graphical programs, the
number of automated tests was limited. This was further compounded with the games heavy
use of the freetype font library which we were unable to get working in a headless
environment. To counter this, we tested around the library, disabling it in any automatic
tests.

Tests were prioritised for core components such as the Boat and Obstacle classes. This was
appropriate as it allowed us to be certain that any large or fundamental problems were
caught in testing.

Black-box testing was used to allow all team members to contribute to testing without
needing to learn the existing codebase. Because of this, the test cases were derived from
the requirements of the project. This was appropriate as our team divided roles such that
only around half of the members were active in development. The other members were
assigned to planning and testing. This also helped eliminate the chance that a member may
subconsciously only test cases they know work, as the person writing the test may not know
the inner workings.

A small amount of white-box testing was used to test that core elements such as type enums
were consistent throughout development. This was needed to ensure that these were not
changed during testing by a developer then not returned to their original values.

We made a testing report Google Sheet which contained columns; test id, file location,
description, related requirements, author, expected outcome and current status of the test in
the master branch. A screenshot is shown below:

id location related requirements author expected outcome status
TUA_BOAT_TYPE BoatTypeTest java Che: les are initialised UR_BOAT_UNIQUENESS William Walton Boat attibutes are depenendant on BoatType Passing

TU_BUTTON_HOVER ButtonTest java Check that the ng() method William Walton isHovering() is tr mouse is hovering and false Passing
is accurate UR_SAVE SUME_GAME when no mouse is hovering

CHOOSING_UNIQUE_BOAT

FR_DIFFICULTY_SELECTION

FR_INPUT DETECTION

If you want to view on the website: https://umerfakher.github.io/ENG1Project/#testing

As an accompaniment to the test report, a naming scheme was developed for test IDs. This
maintained traceability through uniform naming. Each test begins with a prefix; either TUA
for simple unit tests, TU for more complex unit tests, Tl for integration tests or TM for manual
playtesting.

https://github.com/TomGrill/gdx-testing
https://umerfakher.github.io/ENG1Project/#testing

b) Test Report

Planning

Both a test report and test matrix were created in test development. The report was used to
keep track of who was responsible for completing each test as well as the current status of
the test. The test matrix was used to help create a test suite that tested all requirements with
as little overlap as possible. An excerpt from the report and the matrix is shown below, with
links to the full report available as a google sheet at
(https://docs.google.com/spreadsheets/d/1X2zBIFIJgkkC5BU-5NkCIuKHKR51B-gbUA7MvZ
WE9mA/edit?usp=sharing), and the testing matrix available also as a google sheet, at
(https://docs.google.com/spreadsheets/d/1r3KyjQNQOkj7zwySwaTn-9Hg-sPPM9ROeYgUvQ
wiK44/edit?usp=sharing).

If you want to view on the website: https://umerfakher.github.io/ENG1Project/#testing
Report:

id location description related requirements author expected outcome status
TUA_BOAT_TYPE BoatTypeTest java Check all boat type variables are initialised UR_BOAT_UNIQUENESS William Walton Boat attibutes are depenendant on BoatType. Passing
to the correct values. FR_CHOOSING_UNIQUE_BOAT
NFR_ATTRIBUTES
TU_BUTTON_HOVER ButtonTest java Check that the Button isHovering() method ~ UR_UX William Walton isHovering() is true when a mouse is hovering and false Passing
is accurate. UR_SAVE_RESUME_GAME when no mouse is hovering.

FR_CHOOSING_UNIQUE_BOAT
FR_DIFFICULTY_SELECTICN
FR_INPUT_DETECTION
NFR_POSITIVE_UX

TU_SAVING RoundsScreenTest java Check the saveToFile function produces the UR_UX William Walton A text file called "testfile txt" should be created with the Passing
expected output UR_SAVE_RESUME_GAME given string as contents
NFR_POSITIVE_UX
TU_HITBOX_POSITION HitboxTest java Check that the Hitbox class reports the UR_OBSTACLE_COLLISION James Frost A Hitbox created at (x,y) and moved (dx,dy) should report Passing
correct position UR_MOVEMENT being at (x+dx y+dy).
FR_BOUNDARY_DETECTION
FR_GOLLISION_DETECTION
TU_HITBOX_COLLISION HitboxTest java Check that the Hitbox class correctly reports UR_OBSTACLE_COLLISION James Frost Collisions should be reported for Hitboxes that are Passing
collisions. UR_MOVEMENT overlapping, but not for Hitboxes that are not overlapping.

FR_BOUNDARY_DETECTION
FR_COLLISION_DETECTION

TU_HITBOX_LEAVE HitboxTest java Check that the Hitbox class is able to UR_OBSTACLE_COLLISION James Frost A previously colliding Hitbox must report no collision if it Passing
determine if another Hitbox is colliding when UR_MOVEMENT moves out of the other Hitboxes bounds
moved. FR_BOUNDARY_DETECTION
FR_COLLISION_DETECTION
TUA_SCROLLINGBG ScrollingBackgroundTest java Check ScrollingBackground is created with UR_UX James Frost The attributes are initialised correctly. Passing
the comrect values. FR_MOVEMENT
NFR_POSITIVE_UX
TU_SCROLLINGBG_UPDATE ScrollingBackgroundTest java Check the background moves on an update. UR_UX James Frost The backgroudn should move x amount when updated Passing
FR_MOVEMENT with a delta of x.
NFR_POSITIVE_UX.
TUA_SETTINGS SettingsTest java Check the default settings are correct UR_UX James Frost The default settings should be the same as in the design Passing
TUA_ASSETS AssefTest java Check all assets are in the correct place UR_UX William Walton All required assets should be in the assets directory and ~ Passing
named acording ot the design
Matrix:
A B | C|D E F G | H 1 J K LIM| N|O|P | Q|R|S T|U VI iw| X ¥ | Z |AA|AB AC | AD | AE | AF |AG AH | Al | AJ
clclclgelc|lElelcle|lcleg|le|lclm|D MW WM M A M MM AW Z Z|Z|Z|Z|Z
@ g] I;U A \I‘ I;U N I;U ol I;U \;U I;‘J \I‘ \;U |;U \JJ I]J \I‘ I;U \;U \J] I:'J \I‘ Im ‘;U \;U % % % B E %
1 1 I 1 l I 1
) o ly'ol'y|lelololclzlm ul'elelelo|ololelelole'zs|=lme a2 |2 2222
Q(,. Hoj—qg”mmxoo T 22 2I1I1IFIVOEBOTF0QCZEETATOREE
2/ = Z 0 0 O || = g\ m @ C wor < > Loz
Q 83389 Ry s 0@ mIgEm35Fzrdrclo SR B eE 85
1 = | = Ll =) |
o = 1 1 7] g o @ m o B] m 3 2 | m
cC|CmA 5o = A 4c!-ma co | 0|5 ololm 2l » 2 0@
1 m C | e = mC m g =z
P 25390 25952885523 n2 785888 RRE0
1 o | o > ® 1 1 m I
| !] i = m m m
% I Fled TSw2eggal 23T R2cHE 3
Q, Z|m g = m L ML ms m e o m 410 > m z =
. AsES L o g2 mmMm@pi3mog mp o =2 g
0 o 0 = @ 9 C 5 a O'lg Z (0] m o X Z
e @ >] m = i |t =, =g = z 5
/‘:9 5 z I m @ O o SR m =
m 0] 0|z =2 Z Q b
3 z g 8 g
8) & 8~
@D 3 z
m Is] a
z i
2
Test Cases
Tested Implicitly
TUA_BOAT_TYPE 1 1 1
TU_BUTTON_HOVER 1 1| 4| 1 1 1
TU_SAVING 1 1 1
TU_HITBOX_POSITION 1 1 1 1
TU_HITBOX_COLLISION 1 1 1 1
TU_HITBOX_LEAVE 1 1 1 1

TUA_SCROLLINGBG
TU_SCROLLINGBG_UPDATE
TUA_SETTINGS
TUA_ASSETS
TUA_FRAMEWORK_TEST

https://docs.google.com/spreadsheets/d/1X2zB9FlJgkkC5BU-5NkCIuKHkR51B-qbUA7MvZWE9mA/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1X2zB9FlJgkkC5BU-5NkCIuKHkR51B-qbUA7MvZWE9mA/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1r3KyjQNQ0kj7zwy5waTn-9Hq-sPPM9ROeYgUvQwiK44/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1r3KyjQNQ0kj7zwy5waTn-9Hq-sPPM9ROeYgUvQwiK44/edit?usp=sharing
https://umerfakher.github.io/ENG1Project/#testing

Automatic Tests

If you want to view on the website: https://umerfakher.github.io/ENG1Project/#testing
Junit4 was used for creating automatic tests. All tests are located in the tests directory in
both the team’s github repo and the source zip file. These were run with the team member’s
IDE during development of each test, or in bulk with the bundled gradle files. The link to the
test files is: (https://github.com/UmerFakher/ENG1Project/tree/master/tests). An example of
one of the tests to test that moving reduces stamina, with it being run as shown below:

linux-terminal $./gradlew :tests:test --tests "com.dragonboatrace.entities.boats.BoatObst
acleTest.staminalUsageTest"

in 1s

Completeness of Testing

All of our automatic tests pass, because of this we decided to check that our testing was
sufficient and thorough enough. To do this, we used the inbuilt code coverage tool in IntelliJ
IDEA while running tests. We did this to get an idea of how much of the codebase was being
tested or ignored by our unit tests.
Elernent
PH entities - 0] /84) The code coverage, shown above,
shows that all the core elements of the
game that were decided to have high
priority (entities and tools) are tested
with 70-80% code coverage. The team
decided this was sufficient as, under further examination, the methods not being tested were
for drawing textures to the screen. These methods were tested in manual testing thus no
automatic testing was required, or possible in some cases.

DragonBoatRace

Proof of Testing
boat tests
Each commit in the github . ST conrritedl 2 hotks it
repo has an associated test
result indicating whether the Merge pull request #14 from UmerFakher/boat-obstacle-testing
commit passed or failed all @ o502 committed 22 hours ago v

the tests by a tick or cross,
an example is shown here
with the commit “boat tests”
failing:

Update PowerUpTest.java

o .
UmerFakher committec

https://umerfakher.github.io/ENG1Project/#testing
https://github.com/UmerFakher/ENG1Project/tree/master/tests

(https://github.com/UmerFakher/ENG1Project/commits/master)

An example of where testing found bugs would be when saving was added to the game. The
test was designed to check for invalid and valid input, however, the implementation did not
function for invalid inputs. Subsequently, the implementation for the save function needed to
be updated to detect for invalid inputs.

Manual Playtesting

TM_STATE_FLOW

ETM_BOAT_INPUT X
The team used manual B

playteSti ng as the methOd for TM_STAT_DISPLAY Initially there was trouble getting to this screen due to a bug that didn't let you
teStI ng anyth | ng too Com pIeX TM_POSITIVE_UX legs without being in the top 3 of the current leg. This has now been fixed.

. . ample group tes’ B
or anything where running i

ETV_RACE_TOTAL

Check that the user must compete in 3 races before reaching a final

TM_BOAT_PDWERUP WELL DONE FOR COMPLETING ROUND 3 IN|
the game Was more Health WITH 1.85 OF THRY IN PENALTIES
appropriate. For example, Agiity IsT comp3
TM_RENDER would be i
impossible to test in a o Ao
headless environment as [TM_BOAT_DAMAGE 6TH COMPG

7TH CcomP2

there is no screen to draw to. EITM_BOAT BREAKING
Because of this, a manual
test was created.

To document manual tests, screenshots and screen recordings were used. The full report for
all manual tests is found on a google doc linked both here and on the website:
(https://docs.google.com/document/d/10sZBECGvhG06pesvoOp2_sTlpsDfSwsfWKjsepcreE
g/edit?usp=sharing). A screenshot from the document used for documenting the manual
tests is shown above.

Problems Found During Playtesting

The textures and colour choices in the game were found to be hard to read in the manual
test TM_POSITIVE_UX. To address this, the texture of the water and the colour of text was
changed. The before and after textures are shown below:

BEFORE AFTER

sSraomiNn 128

(this screenshot may not be very representative of the actual appearance of the game, so
please try the game to see)

A more detailed report of all manual testing, with evidence, is in the google doc found below:
https://docs.google.com/document/d/10sZBECGvhG06pesvoOp2_sTIpsDfSwsfWKjsepcreE
g/edit?usp=sharing

If you want to view on the website: https://umerfakher.github.io/ENG1Project/#testing

https://github.com/UmerFakher/ENG1Project/commits/master
https://docs.google.com/document/d/1OsZBECGvhG06pesvoOp2_sTIpsDf5wsfWKjsepcreEg/edit?usp=sharing
https://docs.google.com/document/d/1OsZBECGvhG06pesvoOp2_sTIpsDf5wsfWKjsepcreEg/edit?usp=sharing
https://docs.google.com/document/d/1OsZBECGvhG06pesvoOp2_sTIpsDf5wsfWKjsepcreEg/edit?usp=sharing
https://docs.google.com/document/d/1OsZBECGvhG06pesvoOp2_sTIpsDf5wsfWKjsepcreEg/edit?usp=sharing
https://umerfakher.github.io/ENG1Project/#testing

