

Testing

 Assessment 2 Team

 Team 12

Richard Liiv

Umer Fakher

William Walton

James Frost

Olly Wortley

Joe Cambridge

a) Summary of Testing Methods
Whilst planning and designing tests, we decided that we should maximise the number of
automatic tests, implementing unit tests for any components that could be tested individually.
Integration tests were used heavily as a lot of the components were too reliant on each other
to be tested in isolation. These allowed us to still run automatic tests for interaction between
objects, for example Obstacles and Boats. (These integration tests required running the
game in a headless environment, using a test runner from
https://github.com/TomGrill/gdx-testing).
A large number of features could not be tested with automatic testing, for example, testing if
the position of buttons were accurate or testing that the UI functioned. To test these, manual
testing was employed. This testing methodology was appropriate for testing the project
because, due to the nature of LibGDX, and by extension most graphical programs, the
number of automated tests was limited. This was further compounded with the games heavy
use of the freetype font library which we were unable to get working in a headless
environment. To counter this, we tested around the library, disabling it in any automatic
tests.

Tests were prioritised for core components such as the Boat and Obstacle classes. This was
appropriate as it allowed us to be certain that any large or fundamental problems were
caught in testing.

Black-box testing was used to allow all team members to contribute to testing without
needing to learn the existing codebase. Because of this, the test cases were derived from
the requirements of the project. This was appropriate as our team divided roles such that
only around half of the members were active in development. The other members were
assigned to planning and testing. This also helped eliminate the chance that a member may
subconsciously only test cases they know work, as the person writing the test may not know
the inner workings.

A small amount of white-box testing was used to test that core elements such as type enums
were consistent throughout development. This was needed to ensure that these were not
changed during testing by a developer then not returned to their original values.

We made a testing report Google Sheet which contained columns; test id, file location,
description, related requirements, author, expected outcome and current status of the test in
the master branch. A screenshot is shown below:

If you want to view on the website: https://umerfakher.github.io/ENG1Project/#testing

As an accompaniment to the test report, a naming scheme was developed for test IDs. This
maintained traceability through uniform naming. Each test begins with a prefix; either TUA
for simple unit tests, TU for more complex unit tests, TI for integration tests or TM for manual
playtesting.

https://github.com/TomGrill/gdx-testing
https://umerfakher.github.io/ENG1Project/#testing

b) Test Report

Planning
Both a test report and test matrix were created in test development. The report was used to
keep track of who was responsible for completing each test as well as the current status of
the test. The test matrix was used to help create a test suite that tested all requirements with
as little overlap as possible. An excerpt from the report and the matrix is shown below, with
links to the full report available as a google sheet at
(https://docs.google.com/spreadsheets/d/1X2zB9FlJgkkC5BU-5NkCIuKHkR51B-qbUA7MvZ
WE9mA/edit?usp=sharing), and the testing matrix available also as a google sheet, at
(https://docs.google.com/spreadsheets/d/1r3KyjQNQ0kj7zwy5waTn-9Hq-sPPM9ROeYgUvQ
wiK44/edit?usp=sharing).
If you want to view on the website: https://umerfakher.github.io/ENG1Project/#testing
Report:

Matrix:

https://docs.google.com/spreadsheets/d/1X2zB9FlJgkkC5BU-5NkCIuKHkR51B-qbUA7MvZWE9mA/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1X2zB9FlJgkkC5BU-5NkCIuKHkR51B-qbUA7MvZWE9mA/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1r3KyjQNQ0kj7zwy5waTn-9Hq-sPPM9ROeYgUvQwiK44/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1r3KyjQNQ0kj7zwy5waTn-9Hq-sPPM9ROeYgUvQwiK44/edit?usp=sharing
https://umerfakher.github.io/ENG1Project/#testing

Automatic Tests
If you want to view on the website: https://umerfakher.github.io/ENG1Project/#testing
Junit4 was used for creating automatic tests. All tests are located in the tests directory in
both the team’s github repo and the source zip file. These were run with the team member’s
IDE during development of each test, or in bulk with the bundled gradle files. The link to the
test files is: (https://github.com/UmerFakher/ENG1Project/tree/master/tests). An example of
one of the tests to test that moving reduces stamina, with it being run as shown below:

Completeness of Testing
All of our automatic tests pass, because of this we decided to check that our testing was
sufficient and thorough enough. To do this, we used the inbuilt code coverage tool in IntelliJ
IDEA while running tests. We did this to get an idea of how much of the codebase was being

tested or ignored by our unit tests.

The code coverage, shown above,
shows that all the core elements of the
game that were decided to have high
priority (entities and tools) are tested
with 70-80% code coverage. The team

decided this was sufficient as, under further examination, the methods not being tested were
for drawing textures to the screen. These methods were tested in manual testing thus no
automatic testing was required, or possible in some cases.

Proof of Testing
Each commit in the github
repo has an associated test
result indicating whether the
commit passed or failed all
the tests by a tick or cross,
an example is shown here
with the commit “boat tests”
failing:

https://umerfakher.github.io/ENG1Project/#testing
https://github.com/UmerFakher/ENG1Project/tree/master/tests

(https://github.com/UmerFakher/ENG1Project/commits/master)
An example of where testing found bugs would be when saving was added to the game. The
test was designed to check for invalid and valid input, however, the implementation did not
function for invalid inputs. Subsequently, the implementation for the save function needed to
be updated to detect for invalid inputs.

Manual Playtesting
The team used manual
playtesting as the method for
testing anything too complex
or anything where running
the game was more
appropriate. For example,
TM_RENDER would be
impossible to test in a
headless environment as
there is no screen to draw to.
Because of this, a manual
test was created.

To document manual tests, screenshots and screen recordings were used. The full report for
all manual tests is found on a google doc linked both here and on the website:
(https://docs.google.com/document/d/1OsZBECGvhG06pesvoOp2_sTIpsDf5wsfWKjsepcreE
g/edit?usp=sharing). A screenshot from the document used for documenting the manual
tests is shown above.

Problems Found During Playtesting
The textures and colour choices in the game were found to be hard to read in the manual
test TM_POSITIVE_UX. To address this, the texture of the water and the colour of text was
changed. The before and after textures are shown below:

(this screenshot may not be very representative of the actual appearance of the game, so
please try the game to see)
A more detailed report of all manual testing, with evidence, is in the google doc found below:
https://docs.google.com/document/d/1OsZBECGvhG06pesvoOp2_sTIpsDf5wsfWKjsepcreE
g/edit?usp=sharing
If you want to view on the website: https://umerfakher.github.io/ENG1Project/#testing

https://github.com/UmerFakher/ENG1Project/commits/master
https://docs.google.com/document/d/1OsZBECGvhG06pesvoOp2_sTIpsDf5wsfWKjsepcreEg/edit?usp=sharing
https://docs.google.com/document/d/1OsZBECGvhG06pesvoOp2_sTIpsDf5wsfWKjsepcreEg/edit?usp=sharing
https://docs.google.com/document/d/1OsZBECGvhG06pesvoOp2_sTIpsDf5wsfWKjsepcreEg/edit?usp=sharing
https://docs.google.com/document/d/1OsZBECGvhG06pesvoOp2_sTIpsDf5wsfWKjsepcreEg/edit?usp=sharing
https://umerfakher.github.io/ENG1Project/#testing

