

Method Selection
and Planning

Original Assessment 1 Team

Team 15

Joe Wrieden

Benji Garment

Marcin Mleczko

Kingsley Edore

Abir Rizwanullah

Sal Ahmed

 Assessment 2 Team

 Team 12

Richard Liiv

Umer Fakher

William Walton

James Frost

Olly Wortley

Joe Cambridge

Method Selection and Planning

Part A: Software Engineering Methods
Scrum is our team’s software development method of choice, as this agile methodology is suitable for
small teams, and shall allow us to deal with changing requirements in the future, especially in
relatively short time constraints. Along with this, it is in our best interests to reconvene in a weekly
Scrum meeting, in which we reflect on our progress throughout the week, checking that every
requirement in our previous stage maps onto at least one requirement in our current stage, and
address issues which may have been initially overlooked before greater complications can arise, as
well as have frequent team walkthroughs of our artefact throughout its incremental development
stages - from the initial requirements to the solution we will pose.

● Other agile frameworks such as XP were considered, but Scrum was chosen due to it being
up to the team to prioritise work according to that which they know is needed, as well as
having less of a focus on strictly following particular engineering methods (e.g paired
programming) that XP advocates.

● Development is carried out in weekly sprints, culminating in the artefact’s current iteration for the week
being provided as a deliverable to the client so they may be included in the development process
should they wish to have access and provide feedback at any point.

● Focusing on the principles of Scrum rather than the practices (e.g. daily Scrum standups,
which we are unable to do due to workloads from other modules; user stories are not a viable
option as we knew the system requirements from the onset), allows us to be flexible with how
much each person can contribute at a time depending on their circumstances, but also
ensuring equal overall contribution through the project schedule, which means our bus factor
remains high (more on this later in “Team Organisation”).

Part A: Development and Collaboration Tools
The Java framework we decided on is libGDX.

● We had considered using LWJGL, a Java library that provides access to native APIs for
graphics and audio. However, libGDX uses this library in its framework, and since code reuse
is an essential part of Software Engineering, we decided we would use the higher level
methods that libGDX provides.

● This also allows us to focus our time during each Scrum sprint on solving issues that relate to
the task given to us by the client, rather than spending the time to learn to use LWJGL as it
provides low-level access.

● On that note, libGDX is quite seamless in that the majority of the program consists of regular
Java, which our team is familiar with. The high-level libGDX methods may simply serve to
render graphics to the screen, for example.

Our IDE of choice is IntelliJ.
● IntelliJ IDEA is the recommended IDE by the libGDX team, and so it has the most support for

the framework.

● We had considered Visual Studio Code as an alternative, however, we had difficulties with VS
Code during our findings, specifically with using the installer from libGDX, which creates
projects using gradle.

● IntelliJ on the other hand does not have this issue, and thus in learning how to use libGDX,

IntelliJ is often referenced, making it the ideal choice.
● Furthermore, IntelliJ lends itself to a project-style of development. It has features that aren’t

present in VS Code that make it easier to work on large scale projects with multiple classes
such as automatic class refactoring.

For version control, we are using Git with our repository stored on GitHub.
● This allows us to avoid collisions and other inconsistencies when merging different members’

works together.

● It allows members the ability to access the code after each sprint to understand how it works in
order to reduce the effects of the bus factor, especially since members are working remotely.

● Furthermore, hosting the repository on GitHub allows us to easily maintain version control
history and even gives us access to GitHub Pages which allows for easy access to
documentation.

● Finally, Git has native integration in IntelliJ thus making it easier to pull and push changes.

For online meetings, we use Zoom.

● A weekly scheduled Zoom Scrum meeting allows us to communicate via voice and text chat
as well as sharing our screens for input from other members for any problems encountered.

● Zoom also gives us a platform to engage in Team-Customer meetings should we have any
questions or queries for the client or vice versa.

For further collaboration, we use Discord.

● Separate text channels allow for easy communication on the relevant issues in each channel,
along with support for uploading various file types.

● Voice channels allow us to communicate with each other in a less structured way when we
need to collaborate before the Scrum meeting.

For task organisation and keeping track of tasks, we used Trello.

● Boards and Calendar showing tasks and team members allocated to each one, with detail in
text and images, organised into different sections.

● Checklists on individual tasks as well as links to resources such as the Github repository.

For UML Class Diagrams, we use PlantUML.

● That lets us create a very high level, abstract representation of the game’s Software
Architecture providing a graphical model that allows people regardless of their technical
background to grasp the gist of complex concepts that code aims to carry out.

Finally, for the storage and collaboration of documents, we use Google Drive, making it easy for
several members to update the same document and edit in real time through the version control
functionality.

Part B: Team Organisation

Our tasks, as described below, have initially been distributed in a way that allows two of our members,
Umer and Will, to focus on learning the technical aspects of the development and programming, while
the other four members take on refining the artefact’s successive design versions and its
documentation. This meant that while the programming team familiarise themselves with libGDX, the
other members are to define the software architecture from the requirements which had been elicited,
carry out planning, as well as identify risks and their respective mitigations.

To respect the Scrum development we had a Scrum master (Umer) which handled team dynamics,
arranging meetings, maintaining task plans and adapting to changing productivity levels of the team
over time. We shared feedback to make sure the bus factor on certain tasks was not too low and
made sure to communicate feedback to each other when changing priorities and owners of tasks. The
Scrum master would coordinate the sub-teams and evaluate project progress.

The reason we feel it is appropriate to split the team into subteams is so that people can work with
their strengths and productivity can be boosted. The documentation is worth three times more than
the code, which is why we have decided to put more people on writing documentation. We decided
against putting more than 4 people on documentation as this would greatly decrease the bus factor,
since there would be only one focusing on code.

Following their findings, the programming team is to inform the rest of the group on how to lay out the
concrete architecture, such as detailing technology-specific methods. They will then continue to
implement the product while the rest of the team write-up the other tasks as laid out below.

For the first half of the project, the documentation team decided to spread the work equally amongst
themselves, with each member focusing on one or two sections. There are a few reasons for this: first
of all, we manage to get four times the amount of ideas on each section, secondly, the layout/style of
each document is going to be the same. Thirdly, having four people working on a section each week
increases the bus factor. And lastly, people can combine their written-communication and technical
abilities.

For some tasks, however, we decided to have a few members of the team work together on a single
part of a document, especially during the closing stages of the project. During the end of the project,
we had less and less to do with some of the team members having nothing to do so having all (or
most) members work together would boost team productivity.

Part C: Project Plan
The plan above describes each individual task that must be completed and in what order. High
priority tasks are coloured in dark turquoise.

Tasks that are dependent on others are denoted by a leading red arrow.

Assessment 1 Gantt Chart

The critical path for Assessment 1 consists of [each of the User, Functional and Non-Functional]
Requirements → Abstract Architecture → Method Selection → Implementation. The plan above
assumes that each task takes the longest possible amount of time to allow room for any risks that
may arise. Changes to how long each task takes and when they begin/end is discussed on the
website.

Assessment 2 Gantt Chart

The critical path for Assessment 2 consists of Implementing Missing Requirements → Software
Testing → Continuous Integration → [Editing Original Team 15 Documents →] Change Report →
Implementation 2 Document. The plan above follows the real time taken to do each of the tasks.

Trello Board Screenshots

Screenshot of the Trello board.
Used for dynamic task management and deadline adjustments. Major and minor tasks have
embedded checklists.

Screenshot of the Trello board calendar.

