

Continuous
Integration Report

 Assessment 2 Team

 Team 12

Richard Liiv

Umer Fakher

William Walton

James Frost

Olly Wortley

Joe Cambridge

Methods and Approaches

Frequent Integration
We decided it was necessary to continuously integrate code with the main branch. This was
appropriate for the project as it allowed us to ensure that any new changes that may have
already been implemented are integrated into all development branches, alerting each
member to any potential conflicts during development. It was also deemed appropriate as it
allowed every member to use new features that had already been tested and pushed to the
main branch. The main benefit of this however, is that it made sure that every time a team
member merged their new code into the main branch, there was little to no merge conflicts
that needed solving thanks to the large amount of common code between team members.

Code Style and Conventions
The development team set a strict code style, following the style set by the previous team.
We did this so the code remained consistent and continued to follow naming conventions
previously set up. Variable, function and class names were also required to be descriptive of
their purpose. This is appropriate because it increases readability of the code and will
improve clarity for any other team that may take up the project.
By maintaining good readability, the speed at which team members, or a new team, can
understand the structure of the code is increased significantly.

Automation
We used automatic building and testing to allow for each version of the program to be
verified and tested against all the new and previous tests created. This means we are able to
know that any new features implemented have not broken any of the previously
implemented features. The team believed that this was appropriate because it allows for us
to check that each member is creating new, useful code with the assurance that no bugs
have been made. The activities that are carried out are an automatic build check and an
automated run of all tests. This was considered sufficient for the project as any more
workflows would further slow down the time it takes to evaluate a pull request or check to
see if a new build is passing all tests. By running tests every time a pull request was made,
the code review process was streamlined because only the new features needed to be
reviewed, not all of the changes to the existing codebase.
These actions ran on any push to the master branch or whenever a pull request was made
to the master branch. This was chosen as any branch other than master would be being
tested locally by the branch’s developer.
There were no outputs from the automated build and testing. The team decided that manual
tagging of versions with a release build would be better for this project as the build can be
manually checked before being uploaded, reducing the risk of a client or user downloading a
debug build by accident.

Badges
The results of the automatic tests and builds are shown in the form of badges. These give a
clear visual representation of the current status of the program, giving each team member
information on what needs to be worked on in an efficient way. Badges were deemed
appropriate for this project for two reasons. Both, because they make understanding the
current status easier for current developers and because they make the status of where we
left off clear for any new developers or maintainers.

Report on Actual Infrastructure

Frequent Integration
Each team member would make a new branch for whatever feature they were
currently implementing. During the process of development, they would frequently
merge the current main branch into their development branch.
Once the feature was completed and tested, the main branch was merged into the
test branch one last time. Any merge conflicts were resolved in the development
branch and tests were run again to ensure that no existing tests were broken by
the merge. Once this was completed, the development branch was merged into
the main branch and considered implemented. (An example of this is shown to the
right, highlighted in red)

Code Style and Conventions
The code style chosen was the Java code style. This is the
style that the previous team used, with variables and
functions being named in camel case, (e.g. agileButton)
and classes being named in camel case with a leading
capital letter (e.g. FinishLine). Other conventions were
also followed, for example, all the classes that inherit from
Screen end with “Screen”. To be consistent with this, the
new difficulty screen class was named
public class DifficultySelectScreen. This was also
conforming with the style for “selection screens” set by the
already implemented public class BoatSelectScreen.

Automation
Github workflows / actions were used to automatically
process builds and tests. This was configured to use a
windows 10 environment, running the gradlew.bat file in the
project’s root directory. The “build” and “test” tasks were
used from our gradle configuration to give the statuses for
each respective badge. The configuration files for these are
stored in the .github folder of the project. (A screenshot
from the configuration is shown to the side)
https://github.com/UmerFakher/ENG1Project/actions

Badges
We used badges to show the current
status of the build and of the current
state of tests. These were at the top
of the README.md file in Github, so
they were shown clearly whenever a
team member opened the github
repository. These were automatically
updated by Github whenever anyone pushed or merged new code into the main branch,
ensuring that they are kept up to date at all times. These can be seen live at
https://github.com/UmerFakher/ENG1Project

https://github.com/UmerFakher/ENG1Project/actions
https://github.com/UmerFakher/ENG1Project

