

Architecture

Original Assessment 1 Team

Team 15

Joe Wrieden

Benji Garment

Marcin Mleczko

Kingsley Edore

Abir Rizwanullah

Sal Ahmed

 Assessment 2 Team

 Team 12

Richard Liiv

Umer Fakher

William Walton

James Frost

Olly Wortley

Joe Cambridge

Architecture

Abstract Representation of Software Architecture1

Abstract diagram changed into the following diagrams by Team 12 for assessment 2. These show
packages in our project also. Please see footnote 1 for clearer diagrams.

Concrete Representation of Software Architecture

In our team’s Requirements Engineering, we used the PlantUML tool to create the UML class
diagram above as a very high level, abstract representation of the game’s Software Architecture.
UML was our choice of modelling language, as using natural language to describe architecture can
be imprecise and verbose since there are many different ways of doing the same thing, however
UML graphical modelling allows people from all backgrounds, technical or nontechnical, to grasp
the gist of complex concepts that code aims to carry out. As well as this, it is an industry standard
and not language nor technology dependent.

Concrete diagram changed into the following diagrams by Team 12 for assessment 2

1 Abstract Architecture: https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml_relations.png

https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml_relations.png

It is not feasible to fit these into this document so please follow the link. Please see
footnote 2 for clearer diagrams.2 Please see Appendix UML Diagrams for an overview.

Added Assessment 2 Requirements Justification (Moved to the top as
important)

UR_DIFFICULTY_BEFORE_GAME: Make addition to the main game class, DragonBoatRace, with
difficulty attribute along with relevant getter and setter implementation for DifficultySelectionScreen
(see requirement below). [*] More obstacles will be spawned to increase difficulty and will be
handled with lane class (see UR_POWERUP_RATE power ups are considered an ObstacleType
as well for scalability). Lane class will also be edited to make sure the 3 initial ‘negative’ obstacle
types added by the previous group will be more likely to spawn (see Impl2 for more details).

FR_DIFFICULTY_SELECTION: By adding DifficultySelectionScreen (to implement libgdx Screen
interface) to let the user select the difficulty level of the game.

UR_POWERUPS: New ObstacleType options are added for new power-ups. Enums for health,
stamina, agility, and speed and ‘all’ attribute powerup will be implemented as per UR_POWERUPS
and more attributes for these obstacles to allow for these ‘positive’ effects will all be added in
ObstacleType class ensuring we respect scalability.

FR_POWERUP_RATE: As the system must distribute an appropriate amount of power ups to
spawn during a race. Please see UR_POWERUPS for types and additions. Please see [*] symbol
in UR_DIFFICULTY_BEFORE_GAME above for treating these powerups as ‘positive’ obstacles.

NFR_ATTRIBUTES: Mentioned a lot above but will now fully print the values on the display for
each attribute for each of the different BoatTypes on BoatSelectionScreen.
UR_SAVE_RESUME_GAME: Allow the player to pause the game save the game progress up to
the start of the last leg started and resume this game later. User input (e.g. using a button like
‘ESC’) for pausing the game and save in game state (storing the player’s total time, current round
and difficulty selected as per UR_DIFFICULTY_BEFORE_GAME) in text file.This will be called in
RoundScreen class and saving to file functionality will be implemented in this file. The
MainGameScreen will have a new button to load from such a ‘save game’ text file inorder to
resume gameplay with correct round, time and difficulty for the game.

Justification for Abstract Representation of Software Architecture

This architecture was developed from the requirements we elicited, but reflects our decisions made
prior to actual implementation, and serves as a basis for our lower level design, the concrete
representation of our Software Architecture, which can be found further down this document. The
architecture shows the classes (with self explanatory names) that the game will consist of, and we
checked that every component in this abstract model relates back to the user requirements, to
ensure that we were not diverging from the requirements set out.

2 Concrete architecture
● https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml.png
● https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml_entites.png
● https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml_screens.png
● https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml_tools.png

https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml.png
https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml_entites.png
https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml_screens.png
https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml_tools.png

This static perspective of our architectural model’s structure enabled us to visualise and break
down the most important requirements of the system (as defined in the System Requirements) that
we needed to prioritise working on, allowing us to be more confident about satisfying the
requirements and having a reliable system, but also make changes easily. Had it been a lower
level design closer to the detail of the code, making necessary design adjustments would have
been costly and difficult on top of already having invested considerable time, resources and effort.
Not only is it useful for bridging the communication gap between system stakeholders and software
engineers, but also it aids project planning by allowing us to make decisions such as on allocating
work or design problems concerning trade offs amongst potentially conflicting quality attributes
before actual implementation. Thus it was advantageous to spend some time using a higher level
design as we did.

Justification for Concrete Representation of Software Architecture

Further on in our Software Development Lifecycle, we developed a concrete representation of what
we have planned for the Software Architecture of the game. This concrete representation is
composed of a structural diagram representing the static features of the system. We checked that
every system requirement relates forward to at least one component in this architectural model, in
order to make sure everyone’s understanding was thorough and up to standard before
implementation. The components of the concrete architectural diagrams’ relation to system
requirements (in turn derived from user requirements, so we are making sure that we are still
following through with the requirements we elicited) are justified under “Justification”.

We used a class diagram form of structural modelling, as it is most applicable to the object oriented
style used in our programming solution. It is clear that the class diagram builds from the abstract
software architecture above and looks at the classes that are more specific to the code in more
detail. The naming convention has also been kept the same from the abstract architecture as this
allows us to clearly see the how we have built from it and causes less confusion. The tool used in
order to make this diagram was the UML Class Diagram tool provided by the IntelliJ IDE.

The diagram provides a critical link between the requirements engineering and the actual design of
the software we implemented. It identifies the main structural components in the system and the
relationships between them. By generating the concrete architecture from the abstract architecture
(the precursor of which in turn was the functional and nonfunctional requirements), it is ensured
that we keep to the requirements set out by the stakeholders, and as a result the concrete
architecture helps reinforce these requirements into our software implementation. A key difference
in the two representations is that this representation has moved away from explicitly referring to the
nonfunctional requirements, as they have been incorporated into the design, and since this one is
more technical and closer to the code. Having this concrete representation of the design we have
settled on will allow it to be easier for us to map the necessary components into the actual code in
the organisational way we decided upon.

We also looked into common pre existing architectural patterns that we could reuse. We could
have used an entity-component system, as it is notable in game development due to its not being
subject to the rigid class hierarchies of object oriented programming (especially difficult when
entities that incorporate different types of functionalities need to be added to the hierarchy),
however we decided to use an object oriented approach via inheritance for the most part, due to
the fact that the complexity of our game mechanic is not to such an extent that it would result in

inefficient code which would become increasingly difficult to maintain. Inheritance also allows for
efficient code reuse, since changes in the parent class affect all children, avoids duplicity and data
redundancy, and reduces time and space complexity. Additionally, we had to bear our time
constraints in mind and stuck to what we had a solid understanding of. Below is the justification
for how the concrete architecture builds from system requirements:

- MainGameScreen: This will be where NFR_MOVEMENT_EXPLANATION and
NFR_RULES_EXPLANATION will be satisfied.

- MainMenuScreen: This class will be used to carry out the FR_CHOOSING_UNIQUE_BOAT
and FR_DIFFICULTY_SELECTION system requirements, and play a part in
NFR_POSITIVE_UX.

- GameOverScreen: After FR_GAME_DURATION, the player’s outcome in the game is
revealed, relating to NFR_END_SCREEN.

- Button: Linked to FR_INPUT_DETECTION, and this class shall process the input if it is a
user click on a button.

- ScrollingBackground: This will allow the player to become invested in the simulation, and
help build NFR_POSITIVE_UX.

- Boat: All objects that extend from this will be unique, relating to UR_BOAT_UNIQUENESS,
and shall be described to the user as per NFR_ATTRIBUTES.

- PlayerBoat: Upon NFR_ATTRIBUTES being carried out, the player will choose their avatar,
linking to the FR_CHOOSING_BOAT system requirement. It is controlled by standard
WASD controls, relating to FR_INPUT_DETECTION and FR_MOVEMENT. If its health
decreases according to numerous FR_HIT_DECREASED_BOAT_CONDITION on top of
FR_TIMED_DECREASED_BOAT_CONDITION, such that FR_BOAT_BREAKAGE occurs,
game ends and NFR_END_SCREEN happens.

- ComputerBoat: An object of this class will be the player’s competition in every race. Will be
an object of type Boat, which was not chosen by the player in NFR_ATTRIBUTES.

- Obstacle: This is dependent upon FR_OBSTACLE_RATE and FR_OBSTACLE_SPAWN.
- ObstacleType: This class allows for variation in obstacles to make the player more invested

in the game, aiding the fulfillment of NFR_POSITIVE_UX.
- Hitbox: This implements FR_COLLISION_DETECTION between object of type Boat and

object of type Obstacle. If true (i.e hit), FR_HIT_DECREASED_BOAT_CONDITION occurs.
- Lane: Using this class, FR_BOUNDARY_DETECTION checks if the player is in lane, else

FR_AWARD_PENALTY is carried out.
- Race: This shall be used to implement FR_FINAL_RACE and FR_QUALIFIER_RACES,

and during its duration FR_DECREASED_BOAT_CONDITION shall be affecting the Boat
objects.

- FinishLine: Upon reaching this before their opponent, a player will win that race. Provides a
sense of achievement before the grand finale of the competition for NFR_POSITIVE_UX.
Timings in FR_QUALIFIER_RACES determine whether FR_FINAL_RACE shall involve the
player or not.

- BoatType: This is an ENUM class that holds the different predefined attributes of various
boats, such as their relative staminas, healths, speeds and velocities - relating to
NFR_ATTRIBUTES and FR_CHOOSING_UNIQUE_BOAT. This class makes it easier to
add new boats to the game as values don’t need to be redefined for each new boat created
in the project. As a result, it will result in boats being less error prone.

- Entity: This ENUM class makes it easier and less error prone to add new obstacles and

boats to the program, as values don’t need to be defined every time, instead they are just
stored in the class - relating to NFR_ATTRIBUTES and FR_OBSTACLE_SPAWN and
FR_CHOOSING_UNIQUE_BOAT.

- EntityType: This ENUM class makes it easier to add new boats to the game as values don’t
need to be redefined for each new boat created in the project. As a result, it will result in
boats being less error prone. All attributes of the boats are predefined in that case - relating
to NFR_ATTRIBUTES and FR_CHOOSING_UNIQUE_BOAT.

- DragonBoatRace: This class is used to initialise the game. This relates to UR_UX.

Bibliography

- “Software Engineering”, Ian Sommerville, Chapter 6
- ”UML Online Training”, Tutorials Point
- “Use Case Models and State Models”, Binary Terms
- Software Architecture: Foundations, Theory, and Practice, R.N. Taylor, N. Medvidovic, and

E.M. Dashofy John Wiley & Sons, 2008.
- Clements, P., F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, J. Stafford.

Documenting Software Architectures: Views and Beyond. Addison- Wesley, Boston, 2002.

Links

See concrete and abstract architecture here:
https://github.com/UmerFakher/ENG1Project/tree/website/Images

Abstract Representation:

- uml_relations.png

● https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml_relations.png

Concrete Representation of Software Architecture:
- uml.png
- uml_entites.png
- uml_screens.png
- uml_tools.png

● https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml.png
● https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml_entites.png
● https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml_screens.png
● https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml_tools.png

https://github.com/UmerFakher/ENG1Project/tree/website/Images
https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml_relations.png
https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml.png
https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml_entites.png
https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml_screens.png
https://github.com/UmerFakher/ENG1Project/blob/website/Images/uml_tools.png

Appendix UML Diagrams:

It is not feasible to fit these into this document so please follow the link. Please see
footnote 2 for clearer diagrams in the page before. Appendix UML Diagrams is an overview.
I have highlighted some of the main parts. Please see links to full diagrams which will make
it easier to zoom in and out.

Dragonboatrace links to Game in libdgx as you can see the upward arrow in the full
diagram (uml.png) links left screenshot to right screenshot.

The dashed arrows from screen in libgdx are linked to the all of the screens with dashed
arrows (these aren’t shown on this particular screenshot (uml_screens.png) below but is
on uml.png)

For example in uml.png they will look like this.

 These are in uml_entities.png.

Top left

Bottom left

Right hand side of screenshot this is contained without entities also.

